
Gerhard SCHMITT
Chen-Cheng CHEN
Jean-Christophe ROBERT
James Karl WEEKS
Department of Architecture
Carnegie - Mellon University
Pittsburgh

OPS5 in architecture:
four Test Cases

I

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 147

ABSTRACT

The ads-antagc of production systems such as OPSS over strum red programming becomes
most c'idcnt when they are applied to large, ill-structured prob!cncs. These applications are
abundant in architcctoral design. Although efficient :algorithm; gist for some di:;t;::ins in
architecture, empirical knowlede is essential in others. This sihmtion calls for hybrid
implementations with traditional efficient procedural packages prosiding support for production
system front ends. OPS5 is a general-purpose production system language. In each one of the four
test cases, one particular aspect of OPS5 was explored in-depth.

The first test case is an attempt to capture the rules of thumb, :,l_corithnis and decision tables
contained in the "Small Office Design I landbook" and to turn it into an interactive computerized
design consultant.

'Ille second test case is an attempt to build an intelligent knowledge acquisition tool to extract
design knowledge from designers with no or very little programming knovrledge, and to transform
that knowledge directly into OPSS.'l'he expert system has a problem decomposition module and an
expert system building component.

The third test program is it knowledge based ROOF l)FSIGNFR. It addresses a subset of the
factors and heuristics that designers use to decide on the shape of roofs. These factors and heuristics
were determined with a protocol analysis and then transformed into OPS5 rules.

The last test case uses TOPSI, the I11M AT implementation of OPSS, and DRAW, a GKS based
graphics program with three dimensional extensions. DRAW acts as a high quality graphics output
device of programs written in TOPSI. A user interface allows the construction of new TOPSI rules
from graphic input in DRAW.

RESUME

L'utilisation de systemes de production tels que OPS5 apparait nettement preferable a
celle de la programmation structuree dans le cas de problemes complexes et mal structures.
De tels problemes sont frequents en design architectural. Bien que des algorithmes
efficaces existent pour certains domaines en architecture, des connaissances empiriques
sont essentielles dans d'autres cas. Cette situation necessite le developpement de systemes
hybrides comprenant des parties procedurales associees a des modules utilisant un
langage de systeme de production tel que OPS5. Nous allons decrire, pour chacune des
quatre applications presentees, un aspect particulier d'OPS5.

Le premier programme tente de reproduire les algorithmes, regles et tables de decision
decrits clans le livre 'Small Office Design Handbook', afin d'en faire un outil de design
interactif.

Darts le deuxieme cas, nous avons tente de developper un outil permettant d'extraire les
connaissances en design de concepteurs sans formation informatique particuliere, et de
transcrire ces connaissances dans OPS5. Le systeme comprend deux parties: un module de
decomposition de probleme, et un generateur de systeme expert.

Le troisieme programme d'essai est un generateur de toitures, qui utilise des parametres
et des techniques employes par les concepteurs pour definir la forme des toitures. Ces
facteurs et raisonnements ont ete determines par des analyses de demarche, et transcrits

en regles de production OPS5.
Le dernier programme a ete developpe en TOPSI, la version d'OPS5 pour IBM AT, et

utilise DRAW, on programme graphique 3D, comme moyen de visualisation graphique. Un
Interface permet egalement de creer graphiquement des regles de production OPS5.

148 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

i

1. INI'ROI)l1Cl'lON

'traditional algorithmic computer programs have proven their usefulness in certain architectural
domains, such as drafting, analysis, and database management. 'they do not, however, directly
address any of the ill-structured and qualitative aspects of a typical architectural design problem.
Knowledge based computer applications arc evolving as a possibility to supplement the capabilities
of the present procedural architectural programs. Out of the growing number of languages

:ilable, such as PROLOG, OPS83, and LISP, „e selected OPS5 to build liwr prototypes that
seemed promising in terns of modeling quantitative and qualitative design decisions. The four
prototypes should be seen not as stand alone programs (although they can function in this manner),
but rather as intelligent front ends to existing algorithmic programs. This way it is possible to take
advantage of highly sophisticated vertically integrated CAI) packages and to combine them
horizontally, i.e., simulate the necessary transdisciplinary character of architectural design.
Idiosyncratic reactions to design problems, the impact of social and historical factors on
architecture, and the important personal stylistic preferences, can be modeled with this approach.
The purpose of this research is twofold: to integrate computer use throughout the design process
without excluding the qualitative aspects of design, and to expand our knowledge of the
architectural design process by externalizing and formalizing the underlying principles. The end
result will not be another "Architecture Machine" but a vehicle to explain and demonstrate
architectural decision-making.

2.OPS5 AS A TOOL IN ARCI IITECI'URE

OPSS stands for Official Production System version 5. It is a general-purpose production system
language and provides a formalism to represent architectural problem-solving knowledge. It can
apply rules that correspond to the explicit chunks of knowledge that are believed to be used by
human experts to solve design problems [Newell 72]. This feature. is a clear advantage over
traditional algorithmic programming techniques which solve well defined problems in a narrow
domain. The scope of typical architectural problems which arc ill-defined and interdisciplinary
goes beyond the capabilities of any algorithmic or rule based system at the present. For restricted
domains in the architectural context, however, OPSS can be applied successfully.

Traditionally, OPSS and the earlier languages of the OPS family have been used for applications in
cognitive psychology and Artificial Intelligence. We chose OPS5 to develop four architectural test
cases for the following reasons:

• OPS5 is not biased toward particular problem solving strategies or representational
schemes. The control mechanism of the OPS5 interpreter, the recognize-act cycle, can
easily be adjusted to specific user needs. -

e OPSS allows the flexible placement of knowledge in the production memory, in the
working memory, in user defined databases, and in external procedures and functions.

• The meaning of symbols and the relations between symbols can be entirely defined by
the programmer and can be easily used to represent experimental knowledge.

While these characteristics of OPSS are attractive for architectural applications, a number of
shortcomings had to be considered from the beginning. They typically occurred when the program
reached a considerable size. These shortcomings are slowness, difficulties in debugging, non-
transparent behavior, and undesirable interactions among rules [Brownston 85]. Some of these

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 149

problems could he overcome by building hybrid implementations. In these cases, OPSS was used
only for the ill-dclined part of the problem, whereas the pniccdural model was applied to the
well-defined part in Nhich calculations and rigid data formats prevailed. This increased efficiency
and execution speed dramatically.

3. CASE ONF,: SMALL OFFICE I)1-.SiGN CON: UI;;,AI`:T

SHnunary

The Small Office Design Consultant advises the user in integrating numerous building design
factors (building area , height, area of opening , climatic region) that contribute to construction and
energy costs of small office buildings. It focuses on energy saving strategics suitable for buildings up
to 50000 sgft.'l he system is organired into five levels . The Small Office Design Consultant will be
especially useful at the beginning of the design process when the architectural program is not
finalized, but when many decisions affecting the building's energy performance are made.
Conventional energy simulation programs like DOE-2 .1C take a considerable amount of time to
collect the input data and to prepare the output data. Therefore , this task is normally left to experts.
The purpose of this program is to simplify the input and to obtain fairly accurate results without
extensive hour by hour simulations . This can be achieved with a knowledge based front end.

Knowledge Representation And Control Strategy

Analysis principles for the system match the ASIIRAE Standard 90-75 Energy Conservation in
New Building Design. The planning and conservation strategies are adopted from the "Small
Office Design) landbook" [Burt 85]. The personal experience of Fred Dubin from Dubin, Bloome,
and Associates, New York was used to supplement and check the rules found in the "Small Office
Design I landbook". 11is reactions to the system provided the necessary feedback to evaluate the
knowledge base.

The reasoning strategy employed by the inference engine is forward-chaining or bottom-up
processing [Hayes-Roth 83]. Starting from what is initially known, e.g. building size, climatic
region, amount of glazing, the current state of knowledge is used to make a chain of inferences until
a goal is reached.

;- Comments begin with a semicolon and continue to the end of line.

IF the building size is small
AND X of glazing less than 17
THEN modifies the % of glazing to be lax,

goes to level 1 design

(p glazing-l-a
((goal ?design - level pre-design tstatus inquire - glazing) < goal>)

{(office t size small tstory I tglazing { <= 17)) (office>)

(modify <office > tglazing 10)

(remove <goal>)
(make goal tdesign-level 1 rstatus design-assumptions)

Figure 1: Sample OPS5 rule from the small office design consultant

150 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

In this forward-chaining architecture, the contents of the working incinory represent what is
currently known 11 larmon 851. 'I he inference engine matches the Icft-hand sides (1.1 IS) of the rules
against the V,01-1, ill" memory, and executes the right-hand sides (RI IS) of the rules to update the
knowledge base by making changes to the working memory (see figure 1).

Sample Session

The user stirts the program by selecting the location of his project. For this purpose , We United
States are divided into five major climatic regions . The progra m then leads through five levels of
proposed energy conscious design considerations:

1. Level 1: energy savings can be achieved by making sure that the proposed small office
building meets the minimum requirements of ASI IRAF. Standard 90-75.

2. Level 2: energy saving can be achieved by wisely selecting basic building characteristics
such as amount of glazing, HVAC system type, and I leating fuel.

3. Level 3: energy savings are achieved by applying a set of lighting, mechanical, and
daylighting strategies to improve upon the design already achieved in Level I and Level
2.

4. Level 4: strategies are presented which are either unique to a given climate or which
require a strong commitment to energy conservation, such as increased manual
switching of lights or wide temperature deadbands (expansion of the thermal comfort

zone).

successful.

5. Level 5: the final level presents a checklist of responsibilities for all members of the
design and construction team to insure that building turnover and operation will be

the system presently runs on a VAX 11/780. It takes about two minutes to load the literalization
module, some 500 production rules and the weather data. The user input is kept in working
memory. According to the forward-chaining control mechanism, the energy design decisions will be
made level by level.

4. CASE TWO: KBS BUILDER

Summary

KBSBuildcr is a tool for developing knowledge based systems (KBS) for design . KBSBuilder is
used to address two major knowledge areas in a design oriented KBS:

• Descriptive Knowledge . This knowledge describes the design elements, constraints, and
the design context ir a frame - like representation.

• Procedural Knowledge. This knowledge can be described as the heuristic knowledge or
rules of thumb that an architect uses to manipulate the descriptive knowledge into a

coherent design.

KBSBuilder is a helpful tool to students of architecture who have little or no expertise in

I

J

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 151

conshuctme, a I<US to model (heir dI :^i,;n process. A welcome additiom to> KUSlluildcr would be a

graphical rcprescntation of its inference paths and design hieruchics. This addition would give

K13SIlui!,!cr the ability to construct Wrote complex and po'.^erful Kl',S's thin ii currently possible.

l)cscriptihe Knonledge l cpresentatio:: -

The descriptive knowledge within KUSIluilder is stored in it semantic network. The semantic
network i< huilt in a hierarchical fashion according to levels of design ahstraction. Once the student
has finis'.:cd hui!ding the descriptive knnwlcdgc base, KliSlluilder converts that knowledge into
OPS5 ^^ rking memory. For example, the rcprescntation of the design element wall could look like
dhis:

• meta-frame: house
des:en-clement: wall
is-part-of: exterior
constraints: length width height

Constraint knowledge is attached to each design element. This knowledge is converted to OPSS
working memory when the student has finished building the descriptive knowledge base for a KBS.
An example for a wall constraint could be represented as follows:

• constraint-name: wall-length
design-element: exterior-wall
attribute: length
measure: >=
value: 2(fcct)

The construction process for the descriptive knowledge base adheres to the top down model, where
the student starts with the highest level of design abstraction and describes all of the design
elements and their respective constraints at each successive level until she or he arrives at the lowest
level of design detail (see figure 2).

House

kitchen
public-space living room

private-space bedroom
bathroom

F igure 2 : Descriptive hierarchy for a simple house.

152 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

Procedural knowledge Representation

Procedural knov.lydge (design rules) are built within the KI1SIluildcr sequentially. The user is
prompted by KllSliuildcr to supply inlunnation for the HIS and the RIIS of the design rules.
Upon cuntpletion of this process, KltSlluilder converts the rules from their internal representation
into OI'SS production rules.

5. CASI? "il f R H';: ROOF DESIGNER

Summary

'llte roof is an integral part of any building. Its shape is determined by a number of factors and
design rules of thumb that vary from architect to architect and from culture to culture. The Roof
Designer(RD) is a knowledge-based system written in OPS5 that designs an "appropriate" roof for
a given building. RD developed out of a research project that investigated the representation of
roof shapes in a 3D geometric solid modeler. The Roof Designer is a very simple expert system. It
has been a vehicle for understanding two aspects: a selected part of the design process and the
construction of an expert system. The Roof Designer has shown that it is possible to recreate the
design process of an architect in a very restricted domain and to come up with some tangible results
that will enable us to build larger and more complex design expert systems.

Knowledge Representation and Control Strategy

The Roof Designer contains procedural and descriptive knowledge in its knowledge base.

Procedural knowledge is used for the inference chaining and heuristics. It is stored in form of
production rules. An example of the procedural knowledge in English is:

rule roofl
if

there is a building that needs a roof and
the building has a northern latitude location and
the building has a rectangular shape and
the building is within a certain length and
the building is within a certain width and
there is an adjacent building that has a hipped roof and
that roof is within a certain height and
that roof is within a certain length and
that roof is within a certain width

then

design a hipped roof for the building and
decide whether or not any roof attributes should also be designed

the second type of knowledge is the static or descriptive knowledge which is stored in the form of a
semantic network of related design elements described at their respective levels of abstraction. This
type of knowledge describes the design context, the design elements, their constraints and the
relations between the design elements.

An example of the descriptive knowledge, addressing the design of a dormer:

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 153

o meta-clement : housel
design-clcrncnt: simple-dorntcr
is-part-of: roof'
shape: local coordinates
typical-roofs: hipped-roof, saltbox

Constraint knowled ge
consU'aint name: •implc dnrmcr nlax width
design-clement : siniple-dormer
dcsign-clemcnt - attributc: width

attribute-neasure: <=

attribute-value: 5(fcct)

Rcl:uionshiLknllwlcdgc
building: house
adjaicenc.v: apartment
length - of-adjacency : 40(feet)
distance-between - bldgs: 10(feet)
height-dillcrence: 15(feet)
direction-of- adj: cast
adj-aesthetics: typel

The user interface of IZI) is embedded in a geometric solid modeler , VEGA, developed at Carnegie-
Mcllon by Professor Robert Woodbury and Greg Glass. VEGA is a menu driven graphics package
wherein IZI) is an operation that can be "picked" from the menu at any time.

A Sample Session

The architect initializes VEGA and builds the design context. Next, the designer picks the "Design
a Roof' operation on the VEGA menu. The Roof Designer prompts the designer for some critical
information such as site latitude, orientation, and building occupancy. The Roof Designer then
transforms the graphical information supplied by VEGA into relational information that will be
used in designing the roof. Once this has been completed, the Roof Designer designs the roof (see
figure 3). The Roof Designer looks at the space below the roof, building occupancy, direction of
the roof slope, along with other information to decide whether or not any other roof attributes need
to be designed. The Roof Designer then designs dormers, and places them along the roof (see figure
4).

Figure 3: (Left) Design context, built in VEGA, and roofs proposed by 1M.
Figure 4: (Right)'lhc building with roofs and dormers proposed by RD.

1 54 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

6. CASK: FOUR: l\'IKI)Ih:VAL A 12CI II'I'I'(I'tlI2I CONS I I1;I';\N'I'

Summary

The Medieval Architecture Consultant combines an expert system and a graphics program. It
provides the cxpcrt systeru with a graphical output and with a graphical knowledge acquisition
option. 'I he prototype in its present form deals with the relationship between the construction of
religious buildings in medie\.tl I:rance and historical conditions. It Icatures the generation and
graphic display of various possible religious building types, their graphic insertion into a map of
prance, and the inference of a historical statement from the distribution, type, and number of the
buildings in a certain area of France. This prototype can easily he enhanced and adapted to other
uses in the architectural design or evaluation process. I:ur instance, fitr building diagnostic
applications, the program would present a set of possible building failures, ask for their location in
the building plan, and suggest strategies for correction. Another possible application is interactive
participatory design. 'T'he user designs within given constraints and receives feedback whenever
constraints are violated. A snore elaborate graphic knowledge acquisition module is under
development. It features general facilities for site and symbols definition, insertion of symbols into
the site, and incorporation of the resulting knowledge into the expert system environment.

hnovdledge Representation and Control Strategy

"l'hc expert system is implemented in TOPS I, the I13M AT version of OPSS. All historical and
factual knowledge is represented in form of rules. The graphics program, DRAW, and the
knowledge acquisition module are written in C and are based on the IIIM Graphical Kernel
Syste n. The program is thus it hybrid implementation. The control strategy is forward chaining.
The user interface is menu diivcu in the'l'GPS[environment, and icon driven in the graphic parts.

The graphic output for the expert system is performed by calling DRAW, after creating a data file
containing the drawing in DRAW format. An earlier version of the program used'l'OPSI rules for
the calculations and C procedures for the writing operations of the data file. It proved to be too
slow. The execution speed was greatly improved by using C procedures for the entire process of
graphics data generation (see figure 5).

0 C procedures only

0 meanly OPS5 rules

7" 55" 12 " 1'04" 21 " 2.33"

a12tw31 (9COMMt l0 ©tmoa0©Illt]

Figure 5 : Comparison of DRAW data file creation time.

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 155

•Ilhe graphic knowledge acquisition progrant writes a file containing 0I'S5 rules that represent the
distribution, type, and number of symbols graphically entered into the site.

'I'0I'Sl is very suitable liter this application for the following reasons:

• Its capability to calf cxtcrr_d C procedures , which enables the communication with the
graphic; program. In addition, the use of C procedures li,r sonic well - defined functions
of the programs saves comput ,, tion time.

• Its flexibility, guaranteed by the representation of the knowledge in form of cuIcs. 'Ibis
enables the addition of the rules resulting from the graphic knowledge acquisition.

'llic user starts by defining the kinds of buildings that will later be used for the history session. A
number of choices are presented to him in form of short menus. Choices include the time period,
the building type, the building location, the kind of religious order, and the financial situation of
tie builders [Brooke 741. If these parameters prove to be insufficient to characterize a building
adequately, more special rules can be added easily. If enough evidence is assembled for one
particular building type, the program will pass control to the graphics program DRAW. This way,
the user "learns" from the program by trying out several input combinations and seeing
immediately the architectural result, displayed by DRAW (see figure 6).

I

Figure 6: (Left) One of the possible building types displayed with DRAW.
Figure 7: (Right) Screen image for the Graphic Knowledge Acquisition module.

The user then has the choice to insert the different possible configurations into the map'of France.
France is divided into live regions for this purpose. The user picks an icon and inserts it into the
appropriate region (see figure 7). The necessary knowledge can be taken from an appropriate
source, such as an architectural history book. By inserting the object into the appropriate region, the
user "teaches" the program. The program will accept the input in graphic form and convert this
information into TOPSI rules. Once control is passed back to the KIII{S, the result of the graphic
interaction will be analyzed and die most likely political situation, based on the input, will be

156 CAO & ROBOTIQUE EN ARCHITECTURE E'f BTP

described. If this political analysis conflicts with the user's knowledge, two reasons can be isolated.
First, the graphic input could be wrong. 'this can be corrected immediately. Second. the rules in
production memory that assess the political situation based on the building distribution in the
region are incomplete or do not apply to this region. In this case, the production memory
knowledge has to he changed or enha ceu.

7. CONCLUSION

The general-purpose production system language OPS5 was applied to four architectural test cases.
'llic Small Office Design Consultant provides a tool to evaluate the energy appropriateness of a
building in die ea rly design stages. 'llic Roof Designer simulates the reasoning of architects in
designing roofs.'I'he KBSRuilder allows a logical breakdown of the design process and provides a
simple interface for building OPS5 rules. 'I'he Medieval Architecture Consultant provides the
possibility to view relations between quantitative and qualitative (historic) conditions. The
advantage of these programs lies in their flexibility and their "learning" and "teaching" capabilities.
The development of the programs provided an important means to clarify the decision making
process in selected architectural domains. After the prototypes had been tested, some of the rules
could be translated into algorithms to increase efficiency. In the conviction that future architectural
computer applications will he of hybrid nature with knowledge based modules supporting
algorithmic utilities, we intend to further develop and integrate the prototypes.

8. REFE RENCFS

[Brooke 74]

113rownston 85]

[Burt 85]

Brooke, C.
The,ilonastic World
Random I louse , New York, 1974.

Brownston , L., Farrel, A., and Kant, E.
Programming Expert Svsi ,ns in OPS5.
Addison-Wesley, Reading, Massachusscts, 1985.

Burt, ITill, Kosarand Rittelman.
Small Office Design Handbook.
Van Nostrand Reinhold , T lorancc, Ky, 1985.

Harmon, P. and King, 1).
Expert Systenm
Wiley Press, New York, NY, 1985.

Mayes-Moth, F., Waterman, U.A. and Lenat, D.B.
Building expert systems.
Addison Wesley, Reading, MA, USA, 1983.

1.1 [Newell 72] Newell, A. and Simon, I I.A.
Human Problem Solving.
Prentice-Hall, Englewood Cliffs, NJ, 1972.

Gerhard Schmitt - Chen-Cheng Chen - Jean-Christophe Robert - James Karl Week

PA 15213Department of Architecture, Carnegie-Mellon University, Pittsburgh,

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

