Gerhard SCHMITT
Chen-Cheng CHEN
Jean-Christophe ROBERT
James Karl WEEKS

Department of Architecture
Carnegie - Mellon University
Pittsburgh

OPSS5 in architecture:
four Test Cases

-

! ! CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 147

7

ABSTRACT

The advantage of production systems such as OPSS over structured programming becomes
most cvident when they are applied to large, ill-structured problems. These applications are
abundant in achitectural design. — Although efficient algorithms cxist for 'some domains in
architecture, cempirical knowledge is essential in others. ‘This situation calls for hybrid
implementations with traditional efTicient procedural packages providing support for production
system front ends. OPSS is a general-purpose production system language. In cach one of the four
test cascs, onc particular aspect of OPSS was explored in-depth.

The Hirst test case is an attempt to capture the rules of thumb, algorithms and decision tables
contained in the "Small Office Design IHandbook" and o turn it into an interactive computerized
design consultant.

‘T'he sccond test case is an attempt to build an intelligent knowledge acquisition tool to extract
design knowledge from designers with no or very little programming knowledge, and to transform
that knowledge dircctly into OPSS. The expert system has a problem decomposition module and an
expert system building component.

‘I'he third test program is a knowledge based ROOF DIESIGNER. Tt addresses a subset of the
factors and heuristics that designers use to decide on the shape of roofs. These factors and heuristics
were determined with a protocol analysis and then transformed into OPSS rules.

The last test case uses TOPSI, the IBM AT implementation of OPSS, and DRAW, a GKS based
graphics program with three dimensional extensions. DRAW acts as a high quality graphics output
device of programs written in ‘TOPSI. A uscr interface allows the construction of new TOPSI rules
from graphic input in DRAW.

RESUME

L'utilisation de systémes de production tels que OPSS5 apparail nettement préférable a
celle de la programmation structurée dans le cas de problémes complexes et mal structurés.
De tels problémes sont frequents en design architectural. Bien que des algorithmes
efficaces existent pour certains domaines en architecture, des connaissances empiriques
sont essentielles dans d'autres cas. Cette situation nécessite le développement de systémes
hybrides comprenant des parties procédurales associees a des modules utilisant un
langage de systéme de production tel que OPS5. Nous allons décrire, pour chacune des
quatre applications présentées, un aspect particulier d'OPSS.

; Le premier programme tente de reproduire les algorithmes, régles et tables de décision
décrits dans le livre 'Small Office Design Handbook', afin d'en faire un outil de design
interactif.

___ Dans le deuxiéme cas, nous avons tenté de développer un outil permettant d’extraire les
“connaissances en design de concepteurs sans formation informatique particuliére, et de

transcrire ces connaissances dans OPSS5. Le systéeme comprend deux parties: un module de

decomposition de probleme, et un generateur de systéme expert.

Le troisiéme programme d'essai est un générateur de toitures, qui utilise des paramétres
et des techniques employés par les concepteurs pour definir la forme des toitures. Ces
facteurs et raisonnements ont été déterminés par des analyses de démarche, et transcrits
. en régles de production OPSS.

' Le dernier programme a été développé en TOPSI, la version d'OPSS5 pour IBM AT, et

utilise DRAW, un programme graphique 3D, comme moyen de visualisation graphique. Un

interface permet également de créer graphiquement des régles de production OPSS.

148 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

LLINTRODUCTION

Traditional algorithmic computer programs have proven their uscfulness in certain architectural

domains, such as drafting, analysis, and database management. They do not, however, directly
address any of the ill-structured and qualitative aspects of a typical architectural design problem.
Knowledge based computer applications arc evolving as a possibility to supplement the capabilitics
of the present procedural architectural programs. Qut of the growing number of languages
available, such as PROLOG, OPS83, and LISP, we sclected OPSS to build four prototypes that
scemed promising in terms of modeling quantitative and qualitative design decisions. ‘I'he four
prototypes should be seen not as stand alone programs (although they can function in this manner),
but rather as intelligent front ends to existing algorithmic programs. ‘I'his way it is possible to take
advantage of highly sophisticated vertically integratcd CAD packages and to combine them
horizontally, i.c.,, simulatc thce nccessary transdisciplinary character of architectural design.
Idiosyncratic reactions to design problems, the impact of social and historical factors on
architecture, and the important personal stylistic preferences, can be modcled with this approach.
The purpose of this research is twofold: to integrate computer use throughout the design process
without excluding the qualitative aspects of design, and to expand our knowledge of the
architectural design process by externalizing and formalizing the underlying principles. The end
result will not be another "Architecture Machine” but a vehicle to cxplain and demonstrate
architectural decision-making.

2. OPSS AS A TOOL IN ARCHITECTURE

OPSS stands for Official Production System version S. It is a general-purpose production system
language and provides a formalism to represent architectural problem-solving knowledge. It can
apply rules that correspond to, the explicit chunks of knowledge that are believed to be uscd by
human experts to solve design problems [Newell 72]. This feature. is a clear advantage over
traditional algorithmic programming techniques which solve well defined problems in a narrow
domain. The scope of typical architectural problems which arc ill-dcfined and interdisciplinary
gocs beyond the capabilities of any algorithinic or rule based system at the present. For restricted
domains in the architectural context, however, OPSS can be applied successfully.

Traditionally, OPSS and the earlicr languages of the OPS family have been used for applications in
cognitive psychology and Artificial Intelligénce. We chose OPSS to develop four architectural test

cascs for the following reasons:

e OPSS is not biascd toward particular problem solving stratcgics or representational
schemes. The control mechanism of the OPSS mterprctcr the recognize-act cycle, can
easily be adjusted to specific uscr nceds.

o OPSS allows the flexible placement of knowledge in the production memory, in the
working memory, in user defined databases, and inexternal procedures and functions.

e The meaning of symbols and the relations between symbols can be entirely defined by
the programmer and can be easily uscd to represent experimental knowledge.

While these characteristics of OPSS are attractive for architectural applications, a number of
shortcomings had to be considered from the beginning. They typically occurred when the program
reached a considerable size. These shortcomings arc slowness, difficultics in dcbugging, non-
transparent behavior, and undcsirable intcractions among rules [Brownston 85]. Some of these

~ CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 149

problems could be overcome by building hybrid implementations. In these cases, OPSS was used
only for the ill-defined part of the problem, whereas the procedural model was applied to the
well-defined part in which calculations and rigid data formats prevailed. This increased efficiency
and exccution speed dramatically.

3. CASE ONE: SMALL OFFICE DESIGN CONSULTAMNT - -
Summary

‘The Small Office Design Consultant advises the user in integrating numerous building design
factors (building area, height, arca of opening, climatic region) that contribute to construction and
encrgy costs of small office buildings. It focuses on cnergy saving strategies suitable for buildings up
to 50000 sqft. T'he system is organized into five levels. ‘The Small Office Design Consultant will be
especially useful at the beginning of the design process when the architectural. program is not
finalized, but when many decisions affecting the building’s cnergy performance are made.
Conventional encrgy simulation programs like DOE-2.1C take a considerable amount of time to
collect the input data and to prepare the output data. Therefore, this task is normally left to experts.
The purpose of this progran is to simplify the input and to obtain fairly accurate results without
extensive hour by hour simulations. "T'his can be achicved with a knowledge based front end.

Knowledge Representation And Control Strategy

Analysis principles for the system match the ASHRAE Standard 90-75 Encrgy Conservation in
New Building Design. The planning and conservation strategies are adopted from the "Small
Office Design Handbook" [Burt 85]. The personal experience of Fred Dubin from Dubin, Bloome,
and Associates, New York was used to supplement and check the rules found in the "Small Office
Design Handbook". His reactions to the system provided the necessary fecdback to evaluate the
knowlcdge base.

The reasoning stratcgy employed by the inference engine is forward-chaining or bottom-up
~ processing [Hayes-Roth 83]. Starting from what is initially known, c.g. building size, climatic
region, amount of glazing, the current state of knowledge is used to make a chain of inferences until
a goal is rcached.

; Comments begin with a semicolon and continue to the end of 1line.

s IF the building size is small

; AND % of glazing less than 17

; THEN modifies the % of glazing to be 10%,
H goes to level 1 design

(p glazing-1-a

{(goal tdesign-level pre-design tstatus inquire-glazing) <goal>}
{(office tsize small tstory 1 tglazing { <= 17 }) <office>)}

=

(modify <office> tglazing 10)

(remove <goal>)

(make goal tdesign-level 1 tstatus design-assumptions)

)

Figure 1: Sample OPSS rule from the small office design consultant

150 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

In this forward-chaining architccture, the contents of the working memory represent what is
currently known [Harmon 85]. ‘T'he inference engine matches the left-hand sides (1.HS) of the rules
against the working memory, and cxecutes the right-hand sides (RI1S) of the rules to update the
knowledge base by making changes to the working memory (see figure 1).

Sample Session

The uscr starts the program by sclecting the location of his project. 1For this purpose, tUfc United
States are divided into five major climatic regions. The program then leads through five levels of
proposed energy conscious design considerations:

1. Level 1: energy savings can be achieved by making surc that the proposed small office
building meets the minimum requirements of ASHRAE Standard 90-75.

2. Level 2: energy saving can be achicved by wisely sclecting basic building characteristics
such as amount of glazing, HVAC system type, and Heating fuel.

3. L.evel 3: energy savings arc achicved by applying a sct of lighting, mechanical, and
daylighting strategics to improve upon the design alrcady achicved in Level 1 and Level
2.

4. Levcl 4: strategics are presented which are either unique to a given climate or which
require a strong commitment to cnergy conscrvation, such as incrcased manual
switching of lights or wide temperature deadbands (expansion of the thermal comfort

zone).

1 5.Level 5: the final level presents a checklist of responsibilitics for all members of the
t design and construction team to insure that building turnover and operation will be

successful.

The system presently runs on a VAX 11/780. It takes about two minutes to load the literalization
module, some 500 production rules and the weather data. The user input is kept in working
memory. According to the forward-chaining control mechanism, the energy design decisions will be
made level by level.)

i 4. CASE TWO: KBS BUILDER
Summary

KBSBuilder is a tool for developing knowledge bascd systems (KBS) for design. KBSBuilder is
used to address two major knowledge areas in a design oricnted KBS:

o Descriptive Knowledge. This knowledge describes the design elements, constraints, and
the design context ir a frame-like representation. .

e Procedural Knowicdge. This knowledge can be described as the heuristic knowledge or
rules of thumb that an architect uscs to manipulate the descriptive knowledge into a

coherent design.

KBSBuilder is a helpful tool to students of architecture who have little or no expertise in

CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 151

constructing a KBS to model their design process. A welcome addition to KBSBuilder would be a
graphical representation of its inference paths and design hicrarchies. “I'his addition would give
KBSBuilder the ability to construet more complex and powerful KBS's than is currently possible.

Descriptive Knowledge Representatio:: - -

The descriptive knowledge within KBSBuilder is stored in a semantic network. The semantic
nctwork i built in a hicrarchical fashion according to levels of design abstraction. Once the student
has finished building the descriptive knowledge base, KBSBuilder converts (hat knowledge into
OPSS working memory. For example, the representation of the design element wall could look like
this:

e meta-frame: house
design-clement: wall
is-part-of: exterior
constraints: length width height

Constraint knowledge is attached to cach design clement. This knowledge is converted to OPSS
working memory when the student has finished building the descriptive knowledge base for a KBS.
An example for a wall constraint could be represented as follows:

e constraint-name; wall-length
dcesign-element: exterior-wall
attribute: length
measure: >=
value: 2(fect)

The construction process for the descriptive knowledge base adheres to the top down model, where
the student starts with the highest level of design abstraction and describes all of the design
clements and their respective constraints at each successive level until she or he arrives at the lowest
level of design detail (sec figure 2).

] ' kitchen
public-space 4living room

interior <

bathroom

wall
structure <
roof

Figure 2: Descriptive hierarchy for a simple house.

152 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

Procedural Knowledge Representation

Procedural knowledge (design rules) are built within the KBSBuilder sequentially. ‘The user is
prompted by KBSBuilder to supply information for the LIS and the RES of the design rules.
Upon completion of this process, KBSBuilder converts the rules from their internal representation
into OPSS production rules.

5. CASE THREE: ROOK DFSIGNER
Summary

‘Ihe roof is an integral part of any building. [ts shape is determined by a number of factors and
design rules of thumb that vary from architect to architect and from culture to culture. ‘The Roof
Designer(RD) is a knowledge-based system written in OPSS that designs an "appropriate™ roof for
a given building. RD developed out of a rescarch project that investigated the representation of
roof shapes in a 3D gecometric solid modeler. ‘The Roof Designer is a very simple expert system. It
has been a vehicle for understanding two aspects: a sclected part of the design process and the
construction of an expert system. ‘I'he Roof Designer has shown that it is possible to recreate the
design process of an architect in a very restricted domain and to come up with some tangible results
that will enable us to build larger and more complex design expert systems.

Knowledge Representation and Control Strategy
The Roof Designer contains procedural and descriptive knowledge in its knowledge base.

Procedural knowledge is used for the inference chaining and heuristics. It is stored in form of
production rules. An example of the procedural knowledge in English is:

rule roof7
if
there is a building that needs a roof and
the building has a northern latitude location and
the building has a rectangular shape and
the building is within a certain Iength and
the building is within a ccertain width and
there is an adjacent building that has a hipped roof and
that roof is within a certain height and
that roof is within a certain length and
“that roof is within a certain width
then
design a hipped roof for the building and
decide whether or not any roof attributes should also be designed

The second type of knowledge is the static or descriptive knowledge which is stored in the form of a
semantic network of related design clements described at their respective levels of abstraction. This
type of knowledge describes the design context, the design elements, their constraints and the

relations between the design elements.

An cxample of the descriptive knowledge, addressing the design of a dormer:

’ " CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION ~ 153

o mcta-clement: houscl
design-clement: simple-dormer
is-part-of: roof
shape: local coordinates
typical-roofs: hipped-roof, salthox

Constraint knowledge Relationship knowledge
constraint name: simple-dormer-max-width building: house
design-clement: simple-dormer - adjacency: apartiient
design-clement-attribute: width length-of-adjacency: 40(fect)
attribute-measure: <= distance-between-bldgs: 10(feet)
attribute-value: S(fect) height-difference: 15(Feet)

direction-of-adj: cast
adj-acsthetics: typel

‘I'he user interface of R is embedded in a geometric solid modcler, VEGA, developed at Carncgie-
Mellon by Professor Robert Woodbury and Greg Glass. VIEGA is a menu driven graphics package
wherein R is an operation that can be "picked"” from the menu at any time.,

A Sample Session

The architect initializes VEGA and builds the design context. Next, the designer picks the "Design
a Roof" operation on the VEGA mcnu. The Roof Designer prompts the designer for some critical
information such as site latitude, orientation, and building occupancy. The Roof Designer then
transforms the graphical information supplied by VEGA into relational information that will be
used in designing the roof. Once this has been completed, the Roof Designer designs the roof (sce
figurc 3). ‘The Roof Designer looks at the space below the roof, building occupancy, direction of
the roof slope, along with other information to decide whether or not any other roof attributes need
to be designed. The Roof Designer then designs dormers, and places them along the roof (see figure
4).

Figure 3: (Left) Design context, built in VEGA, and roofs proposed by RD.

154 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

6. CASE FOUR: MEDIEVAL ARCHITECTURE CONSULTANT

Summary e, . _

‘The Medieval Architecture Consultant combines an expert system and a graphics program. It
provides the expert system with a graphical output and with a graphical knowledge acquisition
option. “The prototype in its present form deals with the relationship between the construction of
rehigious buildings in medicval IFrance and historical conditions. It features the generation and
graphic display of various possible religious building types, their graphic insertion into a map of
Irance, and the inference of a historical statement from the distribution, type, and number of the
buildings in a certain arca of France. "This prototype can casily be enhanced and adapted to other
uses in the architectural design or evaluation process. IFor instance, for building diagnostic
applications, the program would present a set of possible building failures, ask for their location in
the building plan, and suggest strategies for correction. Another possible application is interactive
participatory design. The user designs within given constraints and reccives feedback whenever
constraints arc violated. A more claborate graphic knowledge acquisition module is under
development. It features general facilities for site and symbols definition, insertion of symbols into
the site, and incorporation of the resulting knowledge into the expert system environment.

Knowledge Representation and Control Strategy —

The expert system is implemented in ‘TOPSI, the IBM A'l' version of OPSS. All historical and
factual knowledge is represented in form of rules. The graphics program, DRAW, and the
knowledge acquisition module arc written in C and are based on the IBM Graphical Kernel
System. ‘The program is thus a hybrid implementation. ‘The control strategy is forward chaining.
‘The user interface is inenu driven in the TOPST environment, and icon driven in the graphic parts.

“The graphic output for the expert system is performed by calling DRAW, after creating a data file
containing the drawing in DRAW format. An carlier version of the program used 'TOPSI rules for
the calculations and C procedures for the writing operations of the data file. It proved to be too
slow. The exccution speed was greatly improved by using C procedures for the entire process of
graphics data generation (sce figure S).

C procedures only

Bl meinly OPSS rules

2558]
7° 55" 12 104" 21" 233"
chursh cathedral monastory

Figure 5: Comparison of DRAW data filc creation time,

’ CAD & ROBOTICS IN ARCHITECTURE & CONSTRUCTION 155

‘Ihe graphic knowledge acquisition program writes a file containing OP'SS rules that represent the
distribution, type. and number of symbols graphically entered into the site.

TOPSLis very suitable for this application for the following rcasons:

e Its capability to caii exterrai C procedures, which enables the communication with the
graphics program. In addition, the use of C procedures for some well-defined functions
of the programs saves computation time,

o Its flexibility, guaranteed by the representation of the knowledge in form of rules. This
cnables the addition of the rules resulting from the graphic knowledge acquisition.

Sample Session

The uscr starts by defining the kinds of buildings that will later be uscd for the history session. A
number of choices are presented to him in form of short menus. Choices include the time period,
the building type, the building location, the kind of religious order, and the financial situation of
the builders [Brooke 74]. If these parameters prove to be insufficient to characterize a building
adcquatcly, more special rules can be added casily. If enough cvidence is assembled for one
particular building type, the program will pass control to the graphics program DRAW. ‘This way,
the uscr "learns” from the program by trying out scveral input combinations and sccing
immediately the architectural result, displayed by DRAW (sce figure 6).

i
T
T

Figure 6: (Left) One of the possible building types displayed with DRAW.
Figure 7: (Right) Screen image for the Graphic Knowledge Acquisition module.

The uscr then has the choice to insert the different possible configurations into the map of France.
France is divided into five regions for this purpose. The uscr picks an icon and inserts it into the
appropriate region (sce figure 7). ‘The necessary knowledge can be taken from an appropriate
source, such as an architcctural history book. By inserting the object into the appropriate region, the
. user "teaches” the program. The program will accept the input in graphic form and convert this
~ information into TOPSI rules. Once control is passed back to the KBES, the result of the graphic
-~ interaction will be analyzed and the most likely political situation, based on the input, will be

156 CAO & ROBOTIQUE EN ARCHITECTURE ET BTP

described. If this political analysis conflicts with the user's knowledge, two reasons can be isolated.
First, the graphic input could be wrong. ‘his can be corrected immediately. Second, the rules in
production memory that assess the political situation based on the building distribution in the
region arc incomplcte or do not apply to this rc;,uon In this case, the production memory
knowledge has to be changed or enhariced.) =

7. CONCLUSION

‘T'he general-purpose production system language OPS5 was applied to four architectural test cascs.
The Small Office Design Consultant provides a tool to evaluate the energy appropriatencss of a
building in the carly design stages. ‘I'he Roof Designer simulates the rcasoning of architects in
designing roofs. The KBSBuilder allows a logical breakdown of the design process and provides a
simple interface for building OPSS rufes. ‘The Medieval Architecture Consultant provides the
possibility to view rclations between quantitative and qualitative (historic) conditions. ‘The
advantage of these programs lics in their fIexibility and their "lecarning™ and "tcaching” capabilitics.
The development of the programs provided an important mcans to clarily the decision making
process in sclccted architectural domains. After the prototypes had been tested, some of the rules
could be translated into algorithms to increasce efficiency. In the conviction that future architectural
computer applications will be of hybrid naturc with knowledge based modules supporting
algorithmic utilitics, we intend to further develop and integrate the prototypes.

8. REFERENCES

[Brouke 74] Brooke, C.
The Alonastic Werld,
Random House, New York, 1974,

|Brownston 85] Brownston, L., Farrel, A., and Kant, E.
Programming I-xpert Systems in QPSS.
Addison-Wesley, Reading, Massachussets, 1985.

[Burt 85] Burt, ITill, Kosar and Rittelman.
: Small Office Design Handbook.
Van Nostrand Reinhold, Florance, Ky, 1985.

[Harmon 85] Harmon, P. and King, D.
[xpert Systens. .
Wiley Press, New York, NY, 1985.

[Hayes-Rotl: 83] Hayes-Roth, I.,, Waterman, D.A. and Lenat, D.B.
Building expert systems.
Addison Wesley, Reading, MA, USA, 1983.

[Newell 72] Newell, A. and Simon, H.A.
Human Problem Solving.
Prentice-Hall, Englewood Cliffs, NJ, 1972.

Gerhard Schmitt - Chen-Cheng Chen - Jean-Christophe Robert - James Karl Week:

Department of Architecture, Carnegie-Mellon University, Pittsburgh, PA 15213

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

